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1 Introduction  

The notions of open   subsets, closed   

subsets and closure   were introduced by 

Velicko  39  for the purpose of studying the 

important class of H-closed spaces in terms of 

arbitrary filterbases. Dickman and Porter  8 9, ,  

Joseph  20  and Jankovic  18 19,  continued the 

work of Velicko. Recently Noiri and Jafari  33  

and Jafari  17  have also obtained several new 

and interesting results related to these sets. In 

what follows  X ,   or X  denotes 

topological spaces on which no separation 
axioms are assumed unless explicitly stated. We 
denote the interior and the closure of a subset A  

of X  by  Int A and  Cl A ,  respectively. A 

point x X is called a adherent   point of A  

 10 ,  if  A Cl A I  for every open set V  

containing x.  The set of all adherent   points 
of A  is called the closure   of A  and is 

denoted by A  Cl A .  A subset A  of X  is 

called closed   if  

 

 

 A Cl A .  Dontchev and Maki 

 10 Lemma 3 9, .    have shown that if A  and B  

are subsets of a space  X , ,  then 

     Cl A B Cl A Cl B  U U  and  Cl A B I  

   Cl A Cl B . I  Note also that the closure   

of a given set need not be a closed   set. But it 
is always closed. The complement of a 

closed   set is called a open   set. The 

interior   of set A  in X , written  Int A ,  

consists of those points x  of A  such that for 

some open set U  containing x,  Cl U A.  A 

set A  is open   if and only if  A Int A ,  or 

equivalently, X A  is closed.   The collection 
of all open   sets in a topological space 

 X ,  forms a topology   on X , coarser  than 

  and    if and only if  X ,  is regular. 
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Several authors continued the study of 
closure  operator, open  sets and their 

related topological concepts. Recently some 
authors have studied several generalizations of 

open   sets. A set A  is open   set in  X ,  

if for each x A,  there is U   and a countable 

set C X  such that x U C A.    The family 

of all open  sets in  X ,  is denoted by .  It 

is well known that   forms a topology on X 

finer than .  open  sets played a vital role in 

general topology research. Al Ghour used 
open  sets to define regularity  as a 

generalization of regularity as follows. A 

topological space  X ,  is regular  if for 

each closed set F  in  X ,  and x X F,   

there exist U   and V  such that x U  and 
F V  with U V .I  The closure of A  in the 

topological space  X ,   is called the 

closure   of A  in  X ,  and is denoted by  

 Cl A .  In 2017 Al Ghour used the closure   

operator to define the closure  operator in a 

similar way to that used in the definition of  the 
closure   operator.  A point x X is in 

closure   of A    x Cl A


  if  

 Cl A A I  for any U   with x U .  A set 

A  is called closed   if  Cl A A.


  The 

complement of a closed   set is called a 

open   set. The family of all open   sets in 

 X ,  denoted by 


  forms a topology on X  

which is strictly between   and .  In this paper 

we introduce continuous,   irresolute,   

open ,   closed,   pre open ,   

pre closed,   contra continuous   and 

almost contra continuous   and investigate 

properties and characterizations of these new 
types of mappings.   

 
 

 
 
 
2 Preliminaries  
 
Definition 2.1.    39  Let  X ,  be a 

topological space and let A X .  

 a .  A point x  in X  is in the closure   of A

  x Cl A  if  Cl U A I  for any U   and 

x U .  
 b .  A  is closed   if  Cl A A.   

 c .  A  is open   if the complement of A  is 

closed.   
 d .  The family of all open   sets in  X ,  is 

denoted by .  

Theorem 2.2.    39  Let  X ,  be a topological 

space. Then   a .    forms a topology on X .  

 b .    and    in general. 

Definition 2.3.    16  Let  X ,  be a 

topological space and let A X .  

 a .  A point x  in X  is a condensation point of 

A  if for each U   with x U ,  the set U AI  is 
uncountable.   
 b .  A set A   is closed   if it contains all its 

condensation points.  
 c .  A set A is open   if the complement of 

A  is closed.    
The family of all open   sets in a topological 

space  X ,  is denoted by .  For a subset A  

of a topological space  X , ,  it is known that 

A   if and only if for each x A,   there exists 
U   such that x U  and U A  is countable.  
Theorem 2.4.    3  Let  X ,  be a topological 

space. Then the following statements are true. 
 a .    is a topology on X .  

 b .    and    in general.  

Theorem 2.5.  Let  X ,  be a topological space 

and let A X .  Then     Cl A Cl A   and 

   Cl A Cl A   in general. 

Definition 2.6.    1 Let  X ,  be a topological 

space and let A X .  
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 a .  A point x  in X  is in the closure   of A

  x Cl A


  if  Cl U A I  for any U   

with x U .  
 b .  A set A  is called closed   if 

 Cl A A.


  

 c . A set A  is called open   if the 

complement of A  is closed.   
 d . The family of all open   sets in  X ,  

is denoted by 


      or O X O X , .     

 e . The family of all closed   sets in  X ,  

is denoted by     C X C X , .     

Theorem 2.7.    1  Let  X ,  be a topological 

space and let A X .  Then 

 a .      Cl A Cl A Cl A .
     

 b .  If A  is closed,   then A  is closed,   

 c .  If A  is closed,   then A  is closed. 

Theorem 2.8.    1  Let  X ,  be a topological 

space. Then  .
      

Theorem 2.9.    1  Let  X ,  be a topological 

space. 
 a .  If A B X ,   then    Cl A Cl B .

    

  b .  For each subsets A, B X ,  

     Cl A B Cl A Cl B .
    U U  

 c .  For each subset A X ,   Cl A


 is closed 

in  
 X , .  

 d .  For each A ,


     Cl A Cl A .


   

 e .  For each A ,       Cl A Cl A Cl A .
     

Theorem 2.10.    1  Let  X ,  be a topological 

space. Then  
 a .   and X are closed   sets. 

 b . Finite union of  closed   sets is 

closed.   

 c .  Arbitrary intersection  of  closed   sets 

is closed.   

Theorem 2.11.    1  Let  X ,  be a topological 

space. Then 


  is a topology on X .  

Theorem 2.12.    1  Let  X ,  be a topological 

space and A X .  Then A


  if and only if for 

each x A,  there exists U   such that  

 x U Cl U A.    

Corollary 2.13.  Every open closed   set in a 

topological space  X ,  is open.   

Corollary 2.14.  Every countable open set in a 

topological space  X ,  is open.   

The following example shows that open  are 
strictly between open   sets and open sets. 

Example 2.15.   1  Let ,΅ ,¤ c ,¤  and ¥  

denote, respectively the set of real numbers, the 
set of rational numbers, the set of irrational 
numbers and the set of natural numbers. 
Consider  X ,  where  c, , , , .  ΅ ¥ ¤ ¥ U¤  

Then  , ,


  ΅ ¥ and  , .  ΅  

Definition 2.16.   Let A  be a subset of a topological 

space  X , .  Then the Kernel of A, denoted by 

 Ker A ,  is the intersection of all open supersets of  

A.  

Lemma 2.17.  Let  A  and B  be subsets of a 

topological space  X , , then the following 

properties hold: 

 i .   x Ker A  if and only if A F I  for every 

closed set F  in  X ,  containing x.  

 ii .   A Ker A  and if A  is open in  X , ,  then 

 A Ker A .  

 iii .  If A B,  then    Ker A Ker B .  

 
3 Continuous Mappings   

 
The purpose of this section is to investigate 
properties and characterizations of  continuous   
functions. 

Definition 3.1.  A function    f : X , Y ,    is 

said to be continuous    if  1f V



  for 

every V .  
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Theorem 3.2.  Let    f : X , Y ,    be a 

function. Then the following are equivalent: 

 1  f  is continuous;    

 2  The inverse image of each closed set in Y  is a 

closed  set in ;X  

 3     1 1Cl f V f Cl V ,


         for every 

V Y;  

 4     f Cl U Cl f U ,


        for every U X ;  

 5   For any point x X  and any open set V  of  

Y  containing  f x ,  there exists U


  such that 

x U  and  f U V ;  

 6     1 1Bd f V f Bd V ,


 
         for every 

V Y ;  

 7    f D U Cl f U ,


        for every U X ;  

 8     1 1f Int V Int f V ,


 
         for every 

V Y;  

Proof .     1 2 :  Let F Y  be closed. Since f  

is  continuous,      1 1f Y F X f F     is 

open.   Therefore,  1f F  is  closed   in 

X .  

   2 3 :  Since  Cl V  is closed for every V Y ,

then  1f Cl V     is closed.   Therefore 

      1 1 1f Cl V Cl f Cl V Cl f V .
  

              

   3 4 :  Let U X  and  f U V .  Then 

   1 1Cl f V f Cl V .


         Thus 

       1 1Cl U Cl f f U f Cl f U
  

          

and    f Cl U Cl f U .


        

   4 2 :  Let W Y  be a closed set, and  

 1U f W .  Then    f Cl U Cl f U


      

    1Cl f f W Cl W W .     Thus 

      1 1Cl U f f Cl U f W U .
  

       So U

is closed.   

   2 1 : Let V Y  be an open set. Then Y V is 

closed. Then    1 1f Y V X f V     is 

closed   in X  and hence  1f V  is open 
in X .  

   1 5 :  Let    f : X , Y ,    be 

continuous.   For any x X and any open set V

of Y  containing  f x ,   1U f V ,


   and 

   1f U f f V V .     

   5 1 :  Let V .  We prove  1f V .


   Let 

 1x f V . Then  f x V  and there exists U


  

such that x U and    f x f U V .   Hence 

   1 1x U f f U f V .        It shows that 

 1f V is a neighbourhood   of each of its 

points. Therefore  1f V .


   

   6 8 :  Let V Y.  Then by hypothesis, 

   1 1Bd f V f Bd V


         

     1 1 1f V Int f V f V Int V


          

   1 1f V f Int V          

   1 1f Int V Int f V .


         

   8 6 :  Let V Y.  Then by hypothesis, 

       1 1 1 1f Int V Int f V f V Int f V
  

              

       1 1 1f V f Int V f V Int V              

    1 1Bd f V f Bd V .


          

   1 7 :  It is obvious, since f  is 

continuous   and by  4

   f Cl U Cl f U


        for each U X .  So 

   f D U Cl f U .


        

   7 1 :  Let U Y  be an open set, V Y U 

and  1f V W .   Then by hypothesis  
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   f D W Cl f W .


        Thus 

       1 1f D f V Cl f f V Cl V V .


           

Then     1 1D f V f V


      and  1f V  is 

closed.   Therefore, f  is continuous.   

   1 8 :  Let  V Y.  Then   1f Int V     is  

open    in X .   Thus  1f Int V      

    1 1Int f Int V Int f V .
  

         Therefore

   1 1f Int V Int f V .


         

   8 1 :  Let  V Y  be an open set. Then 

     1 1 1f V f Int V Int f V .


           Therefore, 

 1f V  is open   in X .  Hence f  is 

continuous.   

In the next Theorem, # c.   denotes the set of 

points x  of X  for which a function

   f : X , Y ,    is not continuous.     

Theorem 3.3.  # c.   is  identical with the union 

of the frontier  of the inverse images of 

open   sets containing  f x .     

Proof .  Suppose that f  is not continuous   at 

a point x  of X .  Then there exists an open set 
V Y  containing  f x  such that  f U  is not a 

subset of  V  for every U


  containing x.  

Hence, we have   1 1U f X f V   I  for every 

U


  containing x.  It follows that 

 1x Cl X f V .


     We also have 

   1 1x f V Cl f V .


       This means that 

 1x Fr f V .


     Now, let f  be continuous   

at x X  and V Y  any open set containing 

 f x .  Then,  1x f V  is a  open   set of 

X . Thus.  1x Int f V



      and therefore 

 1x Fr f V



      for every open set V  containing 

 f x .    

Remarks 3.4.  1  Every continuous   function 

is continuous but the converse may not be true. 

 2  If a function    f : X , Y ,    is 

continuous   and a function    g : Y , Z ,  

is continuous,   then    g f : X , Z ,     is 

continuous.   

 3  If a function    f : X , Y ,    is 

continuous   and a function    g : Y , Z ,    

is continuous, then    g f : X , Z ,     is 

continuous.       

 4  Let  X ,   and  Y ,   be topological spaces. 

If    f : X , Y ,    is a function, and one of the 

following 

 a     1 1f Int B Int f B


 
         for each 

B Y .  

 b    1 1Cl f B f Cl B


         for each B Y .  

  c    f Cl A Cl f A


        for each A⊆X. 

    holds, then f  is continuous. 

Lemma 3.5.  Let A Y X ,   Y  is open   in 

X and A  is open   in Y. Then A  is open   

in X .  

Proof .  Since A is open   in Y , there exists a 

open   set U X  such that A Y U . I  Thus A  

being the intersection of two open   sets in X , 
is open   in X . 

Theorem 3.6.  Let    f : X , Y ,    be a 

mapping and  iU : i I  be a cover of X  such that 

iU


  for each i I .  Then prove that f  is 

continuous.   

Proof .  Let V Y  be an open set, then 

   1

if U V


 is open   in iU  for each i I .  

Since iU  is open   in X  for each i I .  So by 

Lemma 3.5,     1

if U V


  is open   in X  for 
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each i I .  But,       11
if V f U V : i I ,

  U  

then   1f V



  because 


 is a topology on 

X .  This implies that f  is continuous.    

 

4 Irresolute Mappings   

In this section, the functions to be considered are 
those for which inverses of open   sets are 

open.   We investigate some properties and 
characterizations of such functions.  

Definition 4.1.  Let  X ,   and  Y ,   be 

topological spaces. A function    f : X , Y ,    

is called irresolute   if the inverse image of each 

open  set of Y  is a open   set in X .  

Theorem 4.2.   Let    f : X , Y ,    be a 

function between topological spaces. Then the 
following are equivalent: 

 1  f  is  irresolute.   

 2  the inverse image of each closed  set in Y  

is a closed   set in X ;  

 3     1 1Cl f V f Cl V
  

          for every 

V Y;  

 4     f Cl U Cl f U
          for every U X ;  

  5     1 1f Int B Int f B
  

         for every 

B Y.  

Theorem 4.3.  Prove that a function  

   f : X , Y ,    is irresolute   if and only if 

for each point p  in X  and each open  set B  in 

Y  with  f p B,  there is a open   set A  in X  

such that p A,  f A B.  

Proof .  Necessity. Let p X and B


  such 

that  f p B.  Let  1A f B .  Since f  is 

irresolute,   A  is open   in X . Also

 1p f B A    as  f p B.  Thus we have 

   1f A f f B B.     

Sufficiency. Let B ,


  let  1A f B .  We show 

that A  is open   in X . For this let x A.   It 

implies that  f x B.  Then by hypothesis, there 

exists xA


  such that xx A  and  xf A B.  

Then    1 1
x xA f f A f B A.        Thus 

 xA A : x A . U  It follows that A  is open   

in X .  Hence f  is irresolute.   

 Definition 4.4.  Let  X ,   be a topological 

space. Let x X  and N X .  We say that N  is a 
neighbourhood   of x  if there exists a 

open   set M  of X  such that x M N.   

 Theorem 4.5.  Prove that a function 

   f : X , Y ,    is irresolute   if and only if 

for each x  in X , the inverse image of every  

neighbourhood  of  f x ,  is a 

neighbourhood   of x.  

Proof .  Necessity. Let x X  and let B  be a 

neighbourhood   of  f x .  Then there exists 

U


  such that  f x U B.   This implies that 

   1 1x f U f B .    Since f  is irresolute,   

so  1f U .



  Hence  1f B  is a 

neighbourhood   of x.   

 Sufficiency. Let B .


  Put  1A f B .  Let 

x A.  Then  f x B.  But then, B  being 

open   set, is a neighbourhood   of  f x .  

So by hypothesis,  1A f B  is a 

neighbourhood  of x.  Hence by definition, there 

exists xA


  such that xx A A.   Thus 

 xA A : x A . U  It follows that A  is a open   

set in X .Therefore f  is irresolute.     

Theorem 4.6.  Prove that a function 

   f : X , Y ,    is irresolute   if and only if 

for each x  in X .  and each neighbourhood  U  

of  f x , there is a neighbourhood  V  of x

such that  f V U .  
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Proof .  Necessity. Let x X  and let U  be a 
neighbourhood   of  f x .  Then there exists 

 f xO


  such that    f xf x O U .   It follows 

that    1 1
f xx f O f U .      By hypothesis, 

 
1

f xf O .


     Let  1V f U .  Then it follows 

that V  is a neighbourhood   of x  and 

   1f V f f U U .     

Sufficiency. Let B .


  Put  1O f B .  Let 

x O.  Then  f x B.  Thus B  is a 

neighbourhood   of  f x .  So by hypothesis, 

there exists a neighbourhood  xV  of x  such that 

 xf V B.  Thus it follows that 

   1 1
x xx V f f V f B O.         Since xV  is a 

neighbourhood  of x, so there exists an 

xO


   such that x xx O V .   Hence xx O O,   

xO .


  Thus  xO O : x O . U  It follows that O  

is open   in X .  Therefore, f  is irresolute.   

Theorem 4.7.  Prove that a function 

   f : X , Y ,    is irresolute   if and only if 

     f D A f A D f A ,
         U  for all A X .  

Proof .Necessity. Let    f : X , Y ,    be 

irresolute.   Let A X , and  0a D A .




Assume that    0f a f A  and let V  denote a  

neighbourhood   of  0f a .  Since f  is 

irresolute,   so by Theorem 4.6,  there exists a 

neighbourhood   U  of 0a  such that  f U V .  

From  0a D A ,


  it follows that U A ; I  there 

exists, therefore, at least one element a U A I  

such that    f a f A  and    f a f V .  Since 

   0f a f A ,  we have    0f a f a .  Thus 

every neighborhood   of  0f a  contains an 

element of  f A  different from  0f a ,  

consequently,    0f a D f A .


      This proves 

necessity of the condition. 

Sufficiency. Assume that f  is not irresolute   

Then by Theorem 4.6,  there exists 0a X  and a 

neighborhood  V  of  0f a   such that every 

neighborhood   U  of 0a  contains at least one 

element a U  for which  f a V .  Put 

  A a X : f a V .     Then 0a A  since 

 0f a V , and therefore  0f a A;  also 

   0f a D f A


     since    0V V f a .  I  

So         0f a f D A f A D f A ,
          U

which is a contradiction to the given condition. The 
condition of the Theorem is therefore sufficient and 
the theorem is proved. 

Theorem 4.8.  Let    f : X , Y ,    be a one-to-

one function. Then f is irresolute.   if and only if 

   f D A D f A ,
          for all A X .  

Proof . Necessity. Let f  be irresolute.   Let 

A X ,  0a D A


  and V  be a 

neighborhood  of  0f a .  Since f is 

irresolute,   so by Theorem 4.6,  there exists a 

neighborhood  U  of 0a  such that  f U V .  

But  0a D A ;


  hence there exists an element 

a U A I  such that 0a a ;  then    f a f A  

and, since f  is one to one,    0f a f a . Thus 

every neighborhood   V  of  0f a  contains an 

element of  f A  different from  0f a ;  

consequently    0f a D f A .


     We have 

therefore    f D A D f A .
          

 Sufficiency. Follows from Theorem 4.7.  

 

5 Open Mappings   

The purpose of this section is to investigate some 
characterizations of open   mappings. 

Definition 5.1.  Let  X ,  and  Y ,    be 

topological spaces. A function    f : X , Y ,    

is called open   if for every open set G  in X ,

 f G  is a open  set in Y. 
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Theorem 5.2.  Prove that a mapping 

   f : X , Y ,    is open   if and only if for 

each x X ,  and  U


 such that x U ,   there 

exists a open   set W Y containing  f x  such 

that  W f U .  

Proof .  Follows immediately from Definition 5.1.  

Theorem 5.3.  Let    f : X , Y ,  be 

open.    If  W Y  and F X  is a closed set 

containing  1f W ,  then there exists a closed.   

H Y containing W  such that  1f H F.   

Proof .  Let  H Y f Y F .    Since 

 1f W F ,   we have    1f Y F Y W .     

Since f  is open ,   then H  is closed   and 

     1 1f H X f f X F X X F F.            

Theorem 5.4.  Let    f : X , Y ,    be a 

open.   function and let B Y.  Then 

     1 1f Cl Int Cl B Cl f B .
  

 
  

        

Proof .  1Cl f B     is closed in X  containing 

 1f B .  By Theorem 5.3,  there exists a 

closed   set B H Y   such that 

   1 1f H Cl f B .      Therefore, we obtain 

   1f Cl Int Cl B
  


  

   

       1 1 1f Cl Int Cl H f H Cl f B .
  

  
  

       
 

Theorem 5.5.  Prove that a function 

   f : X , Y ,    is open   if and only if 

   f Int A Int f A ,


         for all A X .  

Proof .Necessity. Let A X .  Let  x Int A .
Then there exists xU   such that xx U A.   So 

     xf x f U f A .    and by hypothesis, 

 xf U .


  Hence     f x Int f A .


     Thus 

   f Int A Int f A .


         

Sufficiency. Let U .  Then by hypothesis, 

   f Int U Int f U .


         Since  Int U U  as 

U  is open. Also    Int f U f U .

    Hence 

   f U Int f U .


     Thus  f U  is open 

open in Y. So f  is open.   

Remark 5.6.  The equality may not hold in the 
preceding Theorem. 

Theorem 5.7.  Prove that a function 

   f : X , Y ,    is open   if and only if  

   1 1Int f B f Int B ,


          for all B Y.  

Proof .  Necessity. Let B Y.  Since  1Int f B    

is open in X  and f  is open , 

  1f Int f B    is open   in Y. Also we have 

    1 1f Int f B f f B B.         Hence,  we 

have     1f Int f B Int B .


     Therefore, we 

obtain      1 1Int f B f Int B .


       

 Sufficiency. Let A X .  Then  f A Y .  Hence 

by hypothesis, we obtain 

       1 1Int A Int f f A f Int f A .


          

Thus    f Int A Int f A ,


        for all A X .  

Hence, by Theorem 5.5,  f  is open.   

Theorem 5.8.  Let    f : X , Y ,    be a 

mapping. Then a necessary and sufficient condition 
for f  to be open   is that 

   1 1f Cl B Cl f B


         for every subset B  of 

Y. 

Proof .  Necessity. Assume f  is open   Let 

B Y.  Let  1x f Cl B .


      Then 

   f x Cl B .


  Let U   such that x U.  Since 

f  is open ,   then  f U  is a open   set in

Y.  Therefore,  B f U . I Then 

 1U f B .  I  Hence  1x Cl f B .     We 

conclude that    1 1f Cl B Cl f B .
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 Sufficiency. Let B Y.  Then  Y B Y .   By 

hypothesis,    1 1f Cl Y B Cl f Y B .


          

   1 1X Cl f Y B X f Cl Y B .


            Thus 

   1 1X Cl X f B f Y Cl Y B .


             By 

applying a well-known result, it implies that   

   1 1Int f B f Int B .


          Now form 

Theorem 5.7,  it follows that f is open.   

 

6 Closed Mappings   

In this section we introduce closed  functions 
and study certain properties and characterizations of 
this type of functions. 

Definition 6.1.  A mapping    f : X , Y ,    is 

called closed   if the image of each closed set in 

X  is a closed   set in Y. 

Theorem 6.2.  Prove that a mapping 

   f : X , Y ,    is closed   if and only if

   Cl f A f Cl A

         for each A X .  

Proof .  Necessity. Let f  be closed  and let 

A X .  Then    f A f Cl A     and  f Cl A    

is a closed   set in Y .  Thus 

   Cl f A f Cl A .

         

Sufficiency.  Suppose that 

   Cl f A f Cl A ,

         for each A X .  Let 

A X be a closed set. Then 

     Cl f A f Cl A f A .

          This shows that 

 f A  is a closed  set. Hence f  is closed.   

Theorem 6.3.  Let    f : X , Y ,    be 

closed.   If V Y  and E X is an open set 

containing  1f V ,  then there exists a open   

set G Y  containing V such that  1f G E.   

Proof .  Let  G Y f X E .   Since 

 1f V E,   we have  f X E Y V .    Since 

f  is closed,   then G  is a open   set and 

     1 1f G X f f X E X X E E.            

Theorem 6.4. Suppose that    f : X , Y ,    is a 

closed   mapping. Then 

    Int Cl f A f Cl A
         for every subset A  

of X .  

Proof .  Suppose f  is a closed   mapping and 

A  is an arbitrary subset of X . Then  f Cl A    is 

closed   in Y. Then 

     Int Cl f Cl A f Cl A .
  
        But also 

      Int Cl f A Int Cl f Cl A .
      

        

Hence     Int Cl f A f Cl A .
          

Theorem 6.5.  Let    f : X , Y ,    be a

closed   function, and B, C Y .  

Proof .   1  If U  is an open neighborhood of 

 1f B ,  then there exists a open   

neighborhood V of B  such that 

   1 1f B f V U .    

 2   If f  is also onto, then if  1f B  and  1f C  

have disjoint open neighborhoods, so have B  and
C.  

Proof.   1  Let  V Y f X U .    Then 

 c cV Y V f U .    Since f  is closed,   so V  

is a open   set. Since  1f B U ,   we have 

   1c c c cV f U f f B B .      Hence, B V ,  

and thus V is a open   neighborhood of B.  

Further      1 1 1 cc c cU f f U f V f V .            

This proves that  1f V U .   

 2  If  1f B  and  1f C  have disjoint open 

neighborhoods M and N ,then by  1 ,  we have 

open   neighborhoods U  and V  of B  and C  
respectively such that 

     1 1f B f U Int M


   and 

     1 1f C f V Int N .


     Since M  and  N

are disjoint, so are  Int M


 and  Int N ,


 hence 
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so  1f U  and  1f V  are disjoint as well. It 

follows that U and V are disjoint too as f  is onto. 

Theorem 6.6.  Prove that a surjective mapping 

   f : X , Y ,    is closed   if and only if for 

each subset B  of Y  and each open set U  in X  
containing  1f B ,  there exists a open   set V  

in Y  containing B  such that  1f V U .   

Proof .  Necessity. This follows from  1  of 

Theorem 6.5.    

Sufficiency. Suppose F  is an arbitrary closed set in 
X .  Let y  be an arbitrary point in  Y f F .  Then 

     1 1f y X f f F X F         and  X F  

is open in X .  Hence by hypothesis, there exists a 
open   set yV  containing y  such that

   1
yf V X F .    This implies that 

 yy V Y f F .       Thus we obtain

    yY f F V : y Y f F .   U  So  Y f F  

being a union of open   sets, is open    Thus 

its complement  f F  is closed.    This shows 

that f  is closed.   

Theorem 6.7.  Let    f : X , Y ,    be a 

bijection. Then the following are equivalent: 

 a f  is closed.    

 b f  is open.     

 c 1f   is ocontinuous.    

Proof .    a b :   Let U .  Then X U  is 

closed in X . By  a ,   f X U  is closed   in 

Y. But        f X U f X f U Y f U .      

Thus  f U  is open   in Y. This shows that  f  

is open.   

   b c :  Let U X .  be an open set. Since f  is 

open.   So      11f U f U
  is open   in 

Y.  Hence 1f  is ocontinuous.   

   c a :   Let A  be an arbitrary closed set in X . 

Then X A  is open in X .  Since 1f   is 

ocontinuous,      11f X A
   is open   in 

Y .  But        11f X A f X A Y f A .
       

Thus  f A  is closed  in Y .  This shows that f  

is closed.   

 Remark 6.8.  A bijection    f : X , Y ,   may 

be open and closed but neither open  nor 
closed.   

 

 

7 Pre Open Mappings    

The purpose of this section is to introduce and 
discuss certain properties and characterizations of 
pre open   functions. 

Definition 7.1.  Let  X ,  and  Y ,   be 

topological spaces. Then a function 

   f : X , Y ,    is said to be pre open   if 

and only if for each A ,


  f A .


  

Theorem 7.2.  Let    f : X , Y ,    and 

   g : Y , Z ,    be any two pre open   

functions. Then the composition function 
   g f : X , Z ,     is a pre open   function. 

Proof .  Let U .


  Then  f U .


  Since f  is 

pre open   But then   g f U


  as g  is 

pre open.   Hence, g f is pre open.   

Theorem 7.3.  Prove that a mapping 

   f : X , Y ,    is pre open   if and only if 

for each x X and for any U


  such that x U ,  

there exists V


  such that  f x V  and 

 V f U .  

Proof . Routine. 

Theorem 7.4.  Prove that a mapping 

   f : X , Y ,    is pre open   if and only if 

for each x X  and for any neighbourhood   U  
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of x  in X , there exists a neighbourhood   V of 

 f x  in Y  such that  V f U .   

Proof .  Necessity. Let x X  and let U  be a 
neighbourhood    of  x.  Then there exists 

W


  such that x W U.   Then 

      f x f W f U .  But  f W


  as f  is 

pre open   Hence  V f W  is a 

neighbourhood  of  f x  and  V f U .  

Sufficiency. Let U .


   Let x U .  Then U  is a 

neighbourhood  of x.  So by hypothesis, there 

exists a neighbourhood   f xV   of   f x  such 

that      f xf x V f U .   It follows at once that 

 f U is a  neighbourhood   of each of its 

points. Therefore  f U  is open.   Hence f  is 

pre open.    

Theorem 7.5.  Prove that a function 

   f : X , Y ,    is pre open   if and only if 

   f Int A Int f A ,
          for all A X .  

Proof .  Necessity. Let A X .  Let  x Int A .


  

Then there exists xU


  such that  xx U A.   So 

     xf x f U f A   and by hypothesis, 

 xf U .


  Hence    f x Int f A .


     Thus 

   f Int A Int f A .
          

Sufficiency. Let U .


   Then by hypothesis, 

   f Int U Int f U .
          Since  Int U U


  

asU  is open.   Also    Int f U f U .

     

Hence    f U Int f U .


     Thus  f U  is 

open   in Y. So f   is pre open.   

We remark that the equality does not hold in 
Theorem 7.5  as the following example shows.  

Example 7.6.  Let X Y R.   suppose X  be with 

topology  c c, , , , .  ΅ ¥ ¤ ¥ U¤  Then 

 , , .


  ΅ ¥   Let Y  be with discrete topology  

   D A : A X P X .     Let f Id : X Y 

be an identity function defined as  f x x,  for 

each x X .  Let cA . ¤  Then 

    cf Int A Int f A .
          ¤  

Theorem 7.7.  Prove that a function 

   f : X , Y ,    is pre open   if and only if 

   1 1Int f B f Int B ,
  

         for all B Y.  

Proof .  Necessity. Let B Y.  Since  

 1Int f B


    is open   in X  and f  is 

pre open ,     1f Int f B


    is open   in 

Y .  Also we have      1 1f Int f B f f B


         

 B.  Hence,     1f Int f B Int B .
  

     

Therefore    1 1Int f B f Int B .
  

           

Sufficiency. Let A X .  Then  f A Y .  Hence 

by hypothesis, we obtain 

       1 1Int A Int f f A f Int f A .
    

          

This implies that 

       1f Int A f f Int f A Int f A .
    

          
 Thus    f Int A Int f A ,

          for all A X .  

Hence, by Theorem 7.5, f  is pre open.   

Theorem 7.8.  Prove that a mapping 

   f : X , Y ,    is pre open   if and only if 

   1 1f Cl B Cl f B ,
  

         for every subset B  

of  Y .  

Proof .  Necessity. Let B Y.  Let 

 1x f Cl B .


      Then    f x Cl B .


  Let 

U


  such that x U.  By hypothesis, 

 f U


  and    f x f U .  Thus 

 f U B . I  Hence  1U f B .  I  Therefore, 

 1x Cl f B ,


     So we obtain 

   1 1f Cl B Cl f B .
  

         

Sufficiency. Let B Y.  Then  Y B Y .    By 

hypothesis,    1 1f Cl Y B Cl f Y B .
  

           

So    1 1X Cl f Y B X f Cl Y B .
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So    1 1X Cl X f B f Y Cl Y B .
  

             

By a well-known result, it follows that

   1 1Int f B f Int B .
  

          Now by 

Theorem 7.7,  it follows that f  is pre open.   

Theorem 7.9.  Let    f : X , Y ,    and 

   g : Y , Z ,     be two mappings such that 

   g f : X , Z ,     is irresolute.   Then 

 1 If g   is a pre open   injection, then f  is 

irresolute.   

 2  If f  is a pre open   surjection, then g  is 

irresolute.   

Proof .  1   Let U .


  Then  g U


  since 

g  is pre open.   Also g f  is irresolute.   

Therefore, we have    1
g f g U .


      Since g  

is an injection, so we have : 

       1 1 1g f g U f g g U
              

    1 1 1f g g U f U .       Consequently  1f U  

is open   in X . This proves that f   is 
irresolute.    

 2  Let V .


  Then    1
g f V




   since 

g f  is irresolute.   Also f  is pre open 

open      1  f g f V  is open   in Y. 

Since f  is surjective, we note that 

       1 1
f g f V f g f V

             

         1 1 1 1 1f f g V f f g V g V .               
Hence g  is irresolute.   

 

8 Pre Closed Mappings    

In this last section, we introduce and explore several 
properties and characterizations of pre closed   
functions. 

Definition 8.1.  A function    f : X , Y ,    is 

said to be pre closed   if and only if the image 

set  f A  is closed   for each closed   

subset A  of X .  

Theorem 8.2.  The composition of two 

pre closed   mappings is a pre closed   
mapping. 

Proof . The straight forward proof is omitted. 

Theorem 8.3.  Prove that a mapping 

   f : X , Y ,    is pre closed   if and only 

if    Cl f A f Cl A
          for every subset A  

of X . 

Proof .  Necessity. Suppose f  is a 

pre closed   mapping and A  is an arbitrary 

subset of X . Then  f Cl A


     is closed   in 

Y. Since    f A f Cl A ,


     we obtain 

   Cl f A f Cl A .
          

Sufficiency. Suppose F  is an arbitrary closed   

set in X . By hypothesis, we obtain 

       f F Cl f F f Cl F f F .
            

Hence    f F Cl f F .


     Thus  f F  is 

closed   in Y. It follows that f  is 
pre closed.    

Theorem 8.4.  Let    f : X , Y ,    be a 

pre closed  function, and B,C Y .  

 1  If U  is a open   neighborhood of  1f B ,  

then there exists a open   neighborhood V  of 

B  such that    1 1f B f V U .    

 2   If f  is also onto, then if  1f B  and  1f C   

have disjoint open   neighborhoods, so have  B
and C. 

Proof .   1  Let  V Y f X U .    Then 

   c cV Y V f U . Since f  is 

pre closed,   so V  is open.   Since 

 1f B U ,   we have 

   1c c c cV f U f f B B .      Hence, B V ,  

and thus V  is a open   neighborhood of B.  
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Further       1 1 1 cc c cU f f U f V f V .          
This proves that  1f V U .   

 2  If  1f B  and  1f C  have disjoint open    

neighborhoods M  and N ,  then by  1 ,   we have 

open   neighborhoods U  and  V  of B  and C  
respectively such that 

     1 1f B f U Int M


    and 

     1 1f C f V Int N .


    Since M  and N  

are disjoint, so are  Int M


 and  Int N ,


 and  

hence so  1f U   and   1f V  are disjoint as well. 

It follows that U  and V are disjoint too as f   is 
onto.  

Theorem 8.5.  Prove that a surjective mapping 

   f : X , Y ,    is pre closed   if and only 

if for each subset B  of Y  and each open   set U 

in X  containing  1f B ,  there exists a open   

set V  in Y  containing B  such that  1f V U .   

Proof . Necessity. This follows from  1 of 

Theorem 8.4.   

Sufficiency. Suppose F  is an arbitrary closed 
set in X . Let y   be an arbitrary point in 

 Y f F .   Then 

     1 1      f y X f f F X F  and

 X F  is open   in X. Hence by hypothesis, 

there exists a open  set yV  containing y  such 

that    1
yf V X F .    This implies that 

     yy V Y f F .  Thus 

       U yY f F V y Y f F .  Hence 

 Y f F ,  being a union of open   sets is 

open.    Thus its complement  f F  is 

closed.    This shows that f is closed.   

Theorem 8.6.  Let    f : X , Y ,    be a 

bijection. Then the following are equivalent: 

 1 f  is pre closed.   

 2 f  is pre open.   

 3  1f  is irresolute.   

Proof .    1 2 :  Let U .


  Then X U is 

closed   in X . By  1 ,   f X U  is 

closed   in Y .  But 

       f X U f X f U Y f U .      Thus 

 f U  is open   in Y.This shows that f  is 

pre open.   

   2 3 : Let A X .  Since f  is pre open ,   

so by Theorem 7.8,  

     1 1f Cl f A Cl f f A .
  

         It implies 

that    Cl f A f Cl A .
          

Thus        1 11 1Cl f A f Cl A ,
  

         
 for all 

A X .  Then by Theorem 4.2,  it follows that 1f  

is irresolute.    

   3 1 :  Let A  be an arbitrary closed   set in 

X .  Then X A  is open   in X . Since 1f  is  

irresolute.      11f X A
   is open   in Y. 

But        11      f X A f X A Y f A .  

Thus  f A  is closed   in Y. This shows that 

f  is pre closed.   

 

9 Contra ContinuousMappings   

We introduce the definition of contra
continuous   functions in topological spaces and 

study some of their properties in this section. 
Definition 9.1.  A function    f : X , Y ,   is 

said to be contra continuous   if   1f V  is 

closed  in  X ,  for each open set V  of 

 Y , .  

Observe that if Observe that if X is a countable set, 
then every function    f : X , Y ,  is contra

continuous.   

Theorem 9.2.  Let    f : X , Y ,   be a 

function. Then the following  are equivalent.  

 1  f  is contra continuous.   
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 2   1f F  is open   in  X ,  for every 

closed subset F  of  Y , .   

 3  For each x X  and each closed set F in 

 Y , containing  f x , there exists a open.  set 

U  in  X ,  containing x  such that  f U F.  

  4     f Cl A Ker f A


        for ever subset A  

of   X , .  

 5     1 1Cl f B f Ker B


         for ever subset 

B  of   Y , .  

Proof .    1 2 :  Let F  be any closed set of 

Y . Then  Y F  is open. Hence by hypothesis 
 1f Y F   is closed.   Thus 

   1 1f Y F Cl f Y F .


       We can obtain 

   1 1X f F X Int f F .


 
        Therefore, we 

have     1 1f F Int f F .


 
      Thus  1f F  is 

open   in X .   
 

   2 3 :  Let x X  and F  be a closed set of 

Y  containing  f x .  By  2 ,   1x Int f F .


     

Hence there exists  U X  containing x  such 

that  1x U f F .   Then, x U  and  f U F.  

   3 4 :  Let A  be any subset of X .  Let  

 x Cl A


  and F  be a closed set of Y  containing 

 f x .  Then by  3  there exists  U O X  

containing x  such that  f U F;  hence 

 x U f F .   Since  x Cl A ,


  so U A I  

and hence it follows that

       f U A f U f A F f A .   I I I  Then 

by Lemma 2.15, we have    f x Ker f A     and 

hence we obtain    f Cl A Ker f A .


        

   4 5 :  Let B  be any subset of Y .  By  4 ,  

       1 1f Cl f B Ker f f B Ker B


 


       
and hence    1 1Cl f B f Ker B .


         

   5 1 :  Let V  be any open set of Y .  Then by 

 5  and Lemma 2.15 we obtain

     1 1 1Cl f V f Ker V f V .


           Thus 

   1 1Cl f V f V .


      Hence  1f V  is  

closed   in X .  This shows that  f  is contra 
continuous.   

Proposition 9.3.  Let    f : X , Y ,   be contra  

continuous.   If one of the following conditions 

holds, then  f is continuous.   

 1  Y ,  is regular,  

 2      1 1Int f Cl V f V


      for each open 

set V  in  Y , .  

Proof .   1  Let x X  and V  be an open set of 

 Y ,  containing  f x .  Since  Y ,  is regular, 

there exists an open set W  in  Y ,  containing  

 f x  such that  Cl W V .  Since  f  is contra 

continuous,   so by Theorem 9.2, there exists a 

open   set U in  X ,  containing x  such 

that  
   f U Cl W ;  hence  f U V .  Therefore  f  

is continuous.   

 2  Let V  be an open set of  Y , .  Since  f  is 

contra continuous   and  Cl V  is closed, by 

Theorem 9.2,  1f Cl V     is open   set in 

 X ,   and hence by (2),  it implies

      1 1 1f Cl V Int f Cl V f V .


           So,  

we obtain     1 1f V Int f Cl V


      and 

consequently  1f V  is open   in  X , .   So 

f  is  a  continuous   function.  

Recall that for a function    f : X , Y , ,    the  

subset    x, f x : x X X Y    is called the 

graph of f  and is denoted by  G f .    

Theorem 9.4.  Let    f : X , Y ,   be a 

function and    g : X , X Y ,      the graph 

function of f ,  defined by     g x x, f x  for 

every x X .  If g  is contra continuous,   then 

f is contra continuous.   

Proof .  Let  U  be an open set in  Y , ,  then 

X U  is an open set in  X Y , .    Since g  

is contra continuous,      1 1g X U f U    is 

closed   in  X , .  This shows that f  is  

contra continuous.     
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Definition 9.5.A subset A  of a topological space 

 X ,  is said to be dense   in  X  if 

 Cl A X .


  

Definition 9.6.  A topological space  X ,  is said 

to be a Urysohn space if for any two distinct 
points x, y X ,  there exist  open subsets U  and 

V  of  X ,  such that x U ,  y V  and 

   Cl U Cl V .I  

Theorem 9.7.  Let    f ,g : X , Y ,   be  two 

contra continuous   functions. If  Y ,  is 

Urysohn, the following properties hold: 

 1  The set     E x X : f x g x    is 

closed   in  X , .  

 2  f g  on  X ,  whenever f g  on a 

dense   set  A X .  

Proof .   1  Let x X E.   Then    f x g x .   

By assumption on the space  Y , ,  there exist 

open sets V  and W  in  Y ,  such that  f x V ,

 g x W  and    Cl V Cl W .I  Since f  and 

g  are contra continuous,    1f Cl V     and 

 1g Cl W     are  open  sets in  X ,  

containing x.  Let  1U f Cl V     and 

 1G g Cl W     and set A U G. I  Then A  is  

open   set in  X ,  containing x.  Now, 

       f A g A f U G g U G I I I I  

       f U g G Cl V Cl W . I I This implies 

that A E ,I  where A  is open   in  X , .  

Hence  x Cl E .


  So E  closed   in  X , .  

 2  Let     E x X : f x g x .    Since f  and 

g  are contra continuous   and  Y ,  is 

Urysohn, by the previous part, E is closed   in 

 X , .  By assumption, we have f g  on A, 

where A  is dense   in  X , .  Since A E,  

A  is dense   and E  is closed   in  X , ,  

so    X Cl A Cl E E.
      Hence f g  on 

 X , .  

Theorem 9.8.Let    f : X , Y ,  and 

   g : Y , Z ,  be functions, then the following 

properties hold: 

 1  g f  is continuous,   if f is contra 

continuous   and g  is contra continuous.  

 2 g f  is contra continuous,   if f is contra 

continuous   and g  is  continuous. 

(  3 g f  is contra continuous,   if f  is  

irresolute   and g  is  contra continuous.    

Theorem 9.9.  let    f : X , Y ,   be a 

surjective irresolute   and openpre    

function and    g : Y , Z ,   be any function. 

Then    g f : X , Z ,     is contra 

continuous   if and only if g  is contra 
continuous.   

Proof .   Suppose     g f : X , Z ,     is contra 

continuous.   Let F  be a closed set in  Z , .  

Then      11 1f g F g f F       is open   in 

 X , .   Since f  is pre open   and 

surjective,     1 1 1g F f f g F       is 

open   in  Y ,  and we obtain that g  is 

contra  continuous..   

For the converse, suppose g  is contra 

continuous.   Let V  be a closed set in  Z , .  

Then  1g V  is open  in  Y , .  Since f  is 

irresolute,        11 1f g V g f V       is  

open   in  X ,  and so g f  is a contra 
continuous.   

Definition 9.10.  A space topological  X ,  is said 

to be Strongly S closed  if every closed cover of 
X has a finite cover.  
Definition 9.11.  A space topological  X ,  is said 

to be compact   if every open   cover of 
X has a finite cover. 
Definition 9.12.  A subset A  of a space  X , is 

said to be compact  relative to X if for any 

cover  V :  V  of A by open  sets of X, 

there exists a finite subset 0V  of V such that 

 0A V : .  U V  

Theorem 9.13.  Let    f : X , Y ,   be contra 

continuous   surjection.  

 1  If A is compact  relative to  X , ,  then 

 f A  is strongly S closed  in  Y , .  
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 2  If  X ,  is strongly S closed,  then  Y ,  

is compact.  
Proof .   1  Let  V :  V  be any cover of  f A

by closed sets of the subspace  f A . For ,V  

there exists a closed set A  of  Y ,  such that  

 V A f A .  I  For each  x A,  there exists 

x V   such that  
x

f x A .    

Now by hypothesis f  is contra  continuous   
and hence by Theorem 9.2,  there  exists a 

open   set xU  in  X ,  such that x U and 

 
xxf U A .  Since the family  xU : x A  is a 

cover of A  by open  sets of  X , ,  there exists 

a finite subset  0A  of  A  such that  

 0xA U : x A . U  Therefore, 

      0 0xxf A f U : x A A : x A .   U U   Thus 

   0x
f A V : x A U   and hence  f A   is 

strongly S closed.  
 2 Let  V :  V  be any open cover of  Y .  Since 

f   is  contra  continuous,     1f V :  V  is 

a closed  cover of the strongly S closed  space 

 X , .  We have   1
0X f V :  U V   for 

some finite  subset 0V  of .V  Since f  is surjective, 

 0Y V : .  U V  This shows that  Y ,  is 

compact. 

Theorem 9.14.  Let   X , :     be any 

family of topological spaces. If a function 

f : X X
 

V
 is contra  continuous,   then  

:f X X     is contra  continuous.   for 

each ,   where   is the projection of X


V
 

onto .X   

Proof. For a fixed ,   let V  be any open subset  

of .X  Since   is continuous,  1 V    is open 

in X


V
 Since f  is contra continuous,    

     11 1f V f V
 

          is closed   in .X  

Therefore, f    is contra  continuous,   for 

each .   

Definition 9.15.  Let  ,X   be a topological 

space. Then the frontier   of a subset A of ,X  

denoted by   ,Fr A


 is defined as 

     Fr A Cl A Cl X A
           

    .Cl A Int A
           

Theorem 9.16.  The set of all points x  of X  at 

which    f : X , Y ,   is not contra  

continuous   is identical with the union of 

frontier   of the inverse images of closed sets of 

Y  containing  .f x   

 Proof. Necessity: Let f  be not contra  

continuous   at a point .x X  Then by 

Theorem 9.2, there exists a closed set F of Y

containing  f x  such that    f U Y F    for 

every  , ,U O X x  which implies that

 1 .U f Y F     Thus  1x Cl f Y F


     

 1 .Cl X f F


     Again, since  1 ,x f F  

we get  1x Cl f F


     and so it follows that 

 1 .x Fr f F


     

Sufficiency: Suppose that   1x Fr f F


     for 

some closed set F  of Y  containing  f x  and f  is 

contra continuous   at .x  Then there exists 

 ,U O X x  such that   .f U F   Therefore 

 1x U f F   and hence it follows that 

    1 1 .x Int f F X Fr f F
  

           But this 

is a contradiction. So f  is not contra 

continuous   at .x   

Definition 9.17. A function    : , ,f X Y   

is called almost weakly continuous,   if, for each 

x X  and for each open set V  of  Y  containing 
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  ,f x  there exists  ,U O X x  such that 

   .f U Cl V   

Theorem 9.18.  Suppose that a function 

   : , ,f X Y   is contra continuous.   

Then f  is  almost weakly continuous.    

Proof. For any open set V  of  Y ,  Cl V  is closed 

in .Y  Since f  is contra continuous,   

 1f Cl V     is open   set in .X  We take 

 1 ,U f Cl V     then    .f U Cl V  Hence f  

is almost weakly continuous.   

Definition 9.19.  A space   X ,  is said to be 

connected   provided that X  is not the union 
of two disjoint nonempty open   sets.  

Proposition 9.20.  Let    f : X , Y ,   be 

surjective and contra continuous.   If  X ,  is 

connected,    then  Y ,  is connected. 

Proof. Assume that   Y ,  is not connected. Then, 

there exist nonempty open sets 1V ,  2V  of   Y ,
such that 1 2V V I  and  1 2V V Y .U  Hence we 

have    1 1
1 2f V f V   I  and 

   1 1
1 2f V f V X .  U  Since f  is surjective, 

 1
1f V   and  1

2f V  are nonempty sets. Since 

f  is contra continuous   and 1V ,  2V are open 

sets. Hence  1
1f V   and  1

2f V  are open   

sets in  X , .  Therefore,  X ,  is not 
connected.   

Theorem 9.21.  If every contra continuous   

function from a space  X ,  into any 0T space  

 Y ,  is constant, then  X ,  is 
connected.   

Proof .  Suppose that  X ,  is  not 

connected  and every contra continuous 

function from  X ,  into any 0T space  Y ,  is 

constant.  Since  X ,  is not connected,   

there exists a proper nonempty open   subset 

A  of  X , .  Let  Y a,b  and 

    ,Y , a , b   be a topology for Y .  Let 

   f : X , Y ,   be a function such that 

   f A a  and    f X A b .   

Then f  is not constant and contra 

continuous   such that  Y ,  is 0T space.  

This is a contradiction. Hence  X ,  must be 
connected.   

Definition 9.22.  A topological space  X ,  is 

said to be 2T   if for each two distinct points 
x, y X ,  there exist open   sets U  and V  in 

 X ,  such that x U , y V   and U V .I  

Definition 9.23.  A topological space  X ,  is 

said to be weakly Hausdorff if each element of 
X  is an intersection of regular closed sets.  
Definition 9.24.  A topological space  X ,  is 

said to be ultra Hausdorff if every two distinct 
points of X  can be separated by disjoint clopen 
sets.  
Definition 9.25.  A topological space  X ,  is 

said to be ultra normal  resp normal.    if 

each pair of non-empty disjoint closed sets can 
be separated by disjoint clopen  
 resp open.    sets.  

Theorem 9.26.  Let    f : X , Y ,   be a 

contra continuous   injection, then the following 
properties hold: 

 1  X ,  is 1T   if  Y ,  is weakly 

Hausdorff. 
 2  X ,  is 2T   if  Y ,  is a Urysohn 

space or ultra Hausdorff. 
 3  X ,  is normal   if   Y ,  is ultra 

normal and f  is closed.  

Proof .   1  Suppose that  Y ,  is weakly 

Hausdorff. For any distinct points x  and y  in 

 X , ,  there exist regular closed sets A, B  in 

 Y ,  such that  f x A,   f y A,   f x B  

and  f y B.  Since f  is contra continuous,   

 1f A  and  1f B  are open  sets in  X ,  

such that   1x f A ,   1y f A ,  1x f B  

and  1y f B .  This shows that  X ,  is 

1T .   
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 2  Let 1x  and 2x  be any distinct points in  X .  

Then, since f  is injective,    1 2f x f x .  

Moreover, since  Y ,  is ultra-Hausdorff, there 

exist clopen sets 1V ,  2V  such that  1 1f x V ,   

 2 2f x V  and 1 2V V .I  Since f is contra 

continuous.   So there exists  iU O X ,   

containing ix  such that  i if U V  for 1 2i , .  

Clearly, we obtain 1 2U U .I  Thus  X ,  is 

2T .   

In case  Y ,  is Urysohn space, there here 

exist open sets 1U ,  2U  such that  1 1f x U ,  

 2 2f x U   and    1 2Cl U Cl U .I  Let 

 1
1G f Cl U     and  1

2H f Cl U .     Then 

1x G,  2x H  and G H .I  Since f  is contra 
continuous.   Therefore G  and H  are 

open   sets in  X , .  Thus  X ,  is 2T .   

 3  Let 1F  and 2F  be disjoint closed subsets of 

 Y , .  Since f  is closed and injective,  1f F  

and  2f F  are disjoint closed subsets of  Y , .  

Since  Y ,  is ultra normal,  1f F  and  2f F  

are separated by disjoint clopen sets 1V  and 2V ,  
respectively. Since f  is contra continuous, 

 1
i iF f V  and  1

if V  is open   in  X ,  

for 1 2i ,  and    1 1
1 2f V f V .  I  Thus 

 X ,  is normal.   

Theorem 9.27.  Let   X ,  be a topological 

space. If for each pair of distinct points 1x  and 

2x  in X  there exists a function f  of   X ,  

into a Urysohn space  Y ,  such that 

   1 2f x f x  and f  is contra continuous   at 

1x  and 2x ,  then  

 X ,  is 2T .   
Proof .  Let x  and y  be any two distinct points of 

X .  Then by the hypothesis, there exist a 
Urysohn space  Y ,  and a function 

   f : X , Y ,   which satisfies the condition of 

the theorem. Let  i iy f x  for 1 2i , .  Then 

1 2y y .  Since Y  is Urysohn, there exist open 
sets U  and V  containing 1y  and 2y , 

respectively, such that    Cl U Cl V .I  Since 

f  is contra continuous   at 1x  and 2x ,  so there 

exists  open  sets G  and H  in  X ,  

containing 1x  and 2x ,  respectively, such that 

   f G Cl U  and    f H Cl V .  Hence we 

obtain G H .I  Therefore,  X ,  is 2T .   

Definition 9.28. .A function    f : X , Y ,   is 

called almost contra continuous   if   1f V
 is 

closed  for every regular open set V  of Y .  

Theorem 9.29.  Let    f : X , Y ,   be a 

function. Then the following statements are 
equivalent: 

 a f  is almost contra continuous   

 b  1f F  is open   in X  for every regular 

closed set F  of Y .  

  c  for each  x X   and each regular open set F  

of Y  containing   ,f x  there exists  O XU   

such that x U  and   .f U F   

 d  for each  x X   and each regular open set V  

of Y  non-containing   ,f x  there exists a 

closed   set K  of X  non-containing x  such 

that  1 .f V K    

Proof .    a b :  Let F  be any regular closed set 

of Y .   Then  Y F  is regular open and therefore 

     1 1X C .f Y F f F X 
      Hence, 

   1 O .f F X
  The converse part is obvious.  

   b c :  Let F be any regular closed set of Y  

containing   .f x  Then    1 Of F X
  and 

 1 .x f F  Taking  1U f F  we get 

  .f U F   

   c b :   Let F be any regular closed set of Y 

and  1 .x f F  Then, there exists  
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 O ,xU X x  such that  xf U F  and so  

 1 .xU f F  Also, we have 

   1

1 .xx f F
f F U



   Hence     1 O .f F X

  

   c d :  Let V be any regular open set of Y non-

containing  f(x). Then  Y V  is regular closed set 

of Y containing f(x). Hence by (c), there exists  

 O ,U X x  such that    .f U Y V   Hence, 

we obtain    1 1XU f Y V f V      and so 

   1 .f V X U    Now, since  O ,U X  

 X U  is closed  set of X  not containing x. 

The converse part is obvious. 

Theorem 9.30.  Let    f : X , Y ,   be almost 

contra continuous.   Then f  is almost  weakly 

continuous.   

 Proof . For ,x X  let H  be any open set of Y  

containing  .f x   Then  Cl H  is a regular closed 

set of Y  containing  .f x  Then by Theorem 9.29, 

there exists  ,G O X x  such that 

   .f G Cl H  So f  is almost weakly

continuous.   

Theorem 9.31.  Let    f : X , Y ,   be an 

almost contra continuous  injection and Y  is 

weakly Hausdorff. Then X  is 1T .   

Proof . Since Y  is weakly Hausdorff, for distinct 

points ,x y  of Y,  there exist regular closed sets U 

and V such that   ,f x U   f y U and 

  ,f y V   .f x V  Now, f  being almost 

contra continuous, 
 

 1f U  and  1f V  are 

open   subsets of X  such that  1 ,x f U

 1y f U  and  1 ,y f V  1 .x f V  This 

shows that X  is 1T .   

Corollary 9.32.  If    f : X , Y ,   is a  contra 

continuous   injection and Y  is weakly 

Hausdorff, then X  is 1Bc T .  

Theorem 9.33. Let    f : X , Y ,   be an 

almost  contra continuous  surjection and X  be 

connected.   Then Y  is  connected.  

Proof .  If possible, suppose that Y  is not 
connected. Then there exist disjoint non-empty open 

sets U  and V of Y  such that .Y U V   Since 

U and V  are clopen sets in Y,  they are regular 

open sets of Y.  Again, since f  is almost contra

continuous   surjection,  1f U  and  1f V

are open   sets of X  and 

   1 1 .X f U f V    This shows that X  is not

connected.    But this is a contradiction. Hence 

Y  is connected. 

Definition 9.34.A topological space  ,X   is 

said to be countably compact  if every 

countable cover of X  by open   sets has a finite 

subcover. 

Definition 9.35.  A topological space  X,   is 

said to be Lindelof   if every open   cover 

of X  has a countable subcover. 

Theorem 9.36. Let    f : X , Y ,  be an 

almost contra continuous  surjection.  Then the 

following statements hold: 

 a  If X  is compact,   then Y  is S closed.  

 b  If X  is Lindelof ,    then Y  is 

S Lindelof .  

 c If X  is countably compact,  then Y  is 

countably S closed.  
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Proof.  a :Let  V : I   be any regular closed 

cover of .Y  Since f  is almost contra

continuous,   then   1 :f V I
   is a 

open   cover of .X  Again, since X  is 

compact,   there exist a finite subset 0I  of I  

such that   1
0:X f V I

   and hence 

 0Y V : I .    Therefore, Y  is S closed.  

The proofs of  b and  c are being similar to 

 a : omitted. 

Definition 9.37.  A topological space  ,X   is said 

to be closed  compact if every closed   

cover of X  has a finite subcover. 

Definition 9.38.  A topological space  ,X   is said 

to be countably closed  if every countable cover 

of X  by closed   sets has a finite subcover. 

Definition 9.39.  A topological space  ,X   is said 

to be closed Lindelof  if every closed   

cover of X  has a countable subcover. 

Theorem 9.40.  Let    f : X , Y ,   be an 

almost contra continuous  surjection.  Then the 

following statements hold: 

 a  If X  is closed   compact, then Y  is nearly 

compact. 

 b  If X  is closed Lindelof ,   then Y  is 

nearly Lindeloff . 

 c If X  is countably closed compact,   then 

Y  is nearly countable compact.  

Proof .  a :Let  :V I    be any regular open 

cover of Y.  Since f  is almost contra 

continuous,   then   1 :f V I
   is a 

closed   cover of .X  Again, since X  is 

closed compact,   there exists a finite subset 0I  

of I  such that   1
0:X f V I

   and hence 

 0: .Y V I   Therefore, Y  is nearly compact.  

The proofs of  b and  c are being similar to 

 a : omitted.
 

 
10 Conclusion  

 
Sets and functions in topological spaces are 
developed and used in many engineering problems, 
information systems and computational topology. 
By researching generalizations of closed sets, some 
new separation axioms and compact spaces have 
founded and are turned to be useful in the study of 
digital topology. In this paper we have introduced 

continuous,   irresolute,    open ,   

closed,   pre open ,   pre closed,   

contra continuous   and almost contra  
mappings and have investigated properties and 
characterizations of these new types of 
mappings in topological spaces. We have 
studied new types of functions using open   
sets and these functions will have many 
possibilities of applications in computer graphics 
and digital topology. 
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